Nuclear Import of Sterol Regulatory Element–binding Protein-2, a Basic Helix-Loop-Helix–Leucine Zipper (bHLH-Zip)–containing Transcription Factor, Occurs through the Direct Interaction of Importin b with HLH-Zip

نویسندگان

  • Emi Nagoshi
  • Naoko Imamoto
  • Ryuichiro Sato
  • Yoshihiro Yoneda
  • Marc Mumby
چکیده

The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helixloop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin b. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin b in the absence of importin a. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin b complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin b in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P6981, an arylstibonic acid, is a novel low nanomolar inhibitor of cAMP response element-binding protein binding to DNA.

Several basic leucine zipper (B-ZIP) transcription factors have been implicated in cancer, substance abuse, and other pathological conditions. We previously identified arylstibonic acids that bind to B-ZIP proteins and inhibit their interaction with DNA. In this study, we used electrophoretic mobility shift assay to analyze 46 arylstibonic acids for their activity to disrupt the DNA binding of ...

متن کامل

SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element.

We report the cDNA cloning of SREBP-2, the second member of a family of basic-helix-loop-helix-leucine zipper (bHLH-Zip) transcription factors that recognize sterol regulatory element 1 (SRE-1). SRE-1, a conditional enhancer in the promoters for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A synthase genes, increases transcription in the absence of sterols and is...

متن کامل

MOLECULAR REPRODUCTION AND DEVELOPMENT 75:1637–1652 (2008) Integration of CREB and bHLH Transcriptional Signaling Pathways Through Direct Heterodimerization of the Proteins: Role in Muscle and Testis Development

The cAMP response element binding protein/activating transcription factor (CREB/ATF) family of transcription factors is hormone responsive and critical for nearly all mammalian cell types. The basic helix-loop-helix (bHLH) family of transcription factors is important during the development and differentiation of a wide variety of cell types. Independent studies of the role of the bHLH protein s...

متن کامل

ETS-core binding factor: a common composite motif in antigen receptor gene enhancers.

A tripartite domain of the murine immunoglobulin mu heavy-chain enhancer contains the muA and muB elements that bind ETS proteins and the muE3 element that binds leucine zipper-containing basic helix-loop-helix (bHLH-zip) factors. Analysis of the corresponding region of the human mu enhancer revealed high conservation of the muA and muB motifs but a striking absence of the muE3 element. Instead...

متن کامل

The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity.

TFE3 is a DNA-binding protein that activates transcription through the muE3 site of the immunoglobulin heavy-chain enhancer. Its amino acid sequence reveals two putative protein dimerization motifs: a helix-loop-helix (HLH) and an adjacent leucine zipper. We show here that both of these motifs are necessary for TFE3 to homodimerize and to bind DNA in vitro. Using a dominant negative TFE3 mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999